
TSpé Devoir surveillé N°2 Mercredi 13/10/21	1
---	---

Nom et Prénom :

Exercice 1 : Étude du phénomène d'interférence (8 points)

Document 1 : Schéma du montage

Document 2 : Figure d'interférence obtenue

Un laser rouge de longueur d'onde λ = 633 nm, éclaire deux petits trous espacés d'un écartement e. On se place au point M sur l'écran.

- Donner la condition sur la différence de marche pour obtenir des interférences constructives et destructives sur l'écran ?
- 2. Le point O au centre de l'écran correspond-t-il à une frange sombre ou brillante ? Justifier.

On établit que la différence de marche s'écrit :

$$\delta \delta = \frac{e \times x}{D}$$
 avec x abscisse du point M

- **3.a.** Définir l'interfrange *i*.
- **3.b.** Etablir l'expression de l'interfrange i en fonction de λ , e et D.
- **4.a** A l'aide du document 2 déterminer, le plus précisément possible, la valeur de l'interfrange i.
- **4.b** En déduire la valeur de l'écartement e entre les deux trous.

1,5

2

1

2

1,5

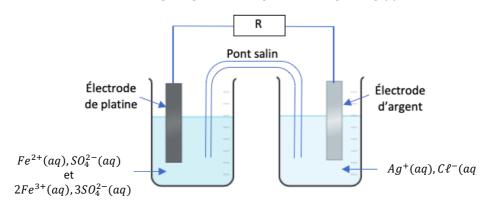
1

Exercice 2: Etat final d'une transformation (4,5 points)

On introduit de la poudre de zinc (Zn) en excès dans un volume $V = 200 \, mL$ d'une solution aqueuse de chlorure d'argent ($Ag^+(aq) + Cl^-(aq)$) à la concentration $c = 1,0 \times 10^{-1} \, mol. L^{-1}$.

Soit la transformation modélisée par la réaction d'équation : 2 Ag⁺ (aq) + Zn(s) \leftrightarrows 2 Ag(s) + Zn²⁺ (aq) Dans l'état final de la transformation, on a une concentration $[Zn^{2+}]_f = 5.0 \times 10^{-2} \text{ mol.} L^{-1}$.

1. Compléter le tableau d'avancement de la transformation chimique étudiée.


Équation chimique	2	Ag ⁺ (aq)	+	Zn _(s)	≒	2 Ag _(s)	+	Zn ²⁺ (aq)	
Avancement (mol)		Quantités de matière (mol)							

- **2.** Déterminer l'avancement final x_f de la transformation
- 3. En déduire le taux d'avancement final de la transformation et indiquer si la transformation est totale ou non.

Exercice 3: Étude d'une pile (7,5 points)

On réalise une pile avec les couples $Ag^+(aq)/Ag(s)$ et $Fe^{2+}(aq)/Fe^{3+}(aq)$ comme schématisée ci-dessous.

L'équation modélisant la réaction de la pile est : $Ag^+(aq) + Fe^{2+}(aq) \leq Fe^{3+}(aq) + Ag(s)$

Données :

- Volume de solution dans chaque demi-pile : V_{solution} = 50 mL
- Masse de l'électrode d'argent : $m_{Ag} = 9 g$
- Concentration en quantité de matière des ions dans les demi-piles : $[Ag^+]_i = [Fe^{2+}]_i = [Fe^{3+}]_i = 1,0 \times 10^{-1} \ mol/L$
- Constante d'équilibre associée à la réaction : K(T) = 3,2 à 25°C.
- Masses molaires (en g/mol) : M(Ag) =107,8.
- Constante d'Avogadro (en mol⁻¹) : $N_A = 6.02 \times 10^{23}$.
- Charge élémentaire (en C) : $e = 1.6 \times 10^{-19}$.
- Constante de Faraday (en C.mol⁻¹) : $F = 96.5 \times 10^3$.
- Concentration molaire standard (en mol.L-1): c° = 1,0.
 - 1. Exprimer puis calculer le quotient de réaction à l'état initial.
 - 2. En déduire le sens d'évolution spontanée de la transformation quand la pile fonctionne.
 - 3. En justifiant avec les demi-équations électroniques, donner la polarité de chaque électrode.
 - **4.** Déterminer les quantités de matière des espèces chimiques présentes dans l'état initial de la transformation.
 - **5.** Exprimer puis calculer la capacité électrique de cette pile.

1

1,5

2

2

1

1,5

1,5

1,5